direct product, non-abelian, soluble, monomial
Aliases: C2×C32⋊Q16, C62.16D4, (C3×C6)⋊Q16, C32⋊2(C2×Q16), C22.16S3≀C2, C3⋊Dic3.34D4, C3⋊Dic3.12C23, C32⋊2C8.8C22, C32⋊2Q8.8C22, C2.21(C2×S3≀C2), (C3×C6).21(C2×D4), (C2×C32⋊2C8).6C2, (C2×C32⋊2Q8).5C2, (C2×C3⋊Dic3).99C22, SmallGroup(288,888)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C2×C32⋊Q16 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2Q8 — C32⋊Q16 — C2×C32⋊Q16 |
C32 — C3×C6 — C3⋊Dic3 — C2×C32⋊Q16 |
Generators and relations for C2×C32⋊Q16
G = < a,b,c,d,e | a2=b3=c3=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ebe-1=c, dcd-1=b-1, ece-1=b, ede-1=d-1 >
Subgroups: 432 in 98 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C3, C4, C22, C6, C8, C2×C4, Q8, C32, Dic3, C12, C2×C6, C2×C8, Q16, C2×Q8, C3×C6, C3×C6, Dic6, C2×Dic3, C2×C12, C2×Q16, C3×Dic3, C3⋊Dic3, C62, C2×Dic6, C32⋊2C8, C32⋊2Q8, C32⋊2Q8, C6×Dic3, C2×C3⋊Dic3, C32⋊Q16, C2×C32⋊2C8, C2×C32⋊2Q8, C2×C32⋊Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C2×Q16, S3≀C2, C32⋊Q16, C2×S3≀C2, C2×C32⋊Q16
Character table of C2×C32⋊Q16
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 1 | 1 | 4 | 4 | 12 | 12 | 12 | 12 | 18 | 18 | 4 | 4 | 4 | 4 | 4 | 4 | 18 | 18 | 18 | 18 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | -2 | -√2 | √2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | -2 | -2 | √2 | -√2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ15 | 4 | -4 | -4 | 4 | -2 | 1 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | -1 | 2 | 1 | -1 | 2 | 0 | 0 | 0 | 0 | -1 | 0 | 1 | 1 | 0 | 0 | 0 | -1 | orthogonal lifted from C2×S3≀C2 |
ρ16 | 4 | -4 | -4 | 4 | 1 | -2 | 0 | 2 | 0 | -2 | 0 | 0 | 1 | 2 | -1 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | 1 | 0 | orthogonal lifted from C2×S3≀C2 |
ρ17 | 4 | -4 | -4 | 4 | -2 | 1 | 2 | 0 | -2 | 0 | 0 | 0 | -2 | -1 | 2 | 1 | -1 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | -1 | -1 | 0 | 0 | 0 | 1 | orthogonal lifted from C2×S3≀C2 |
ρ18 | 4 | 4 | 4 | 4 | 1 | -2 | 0 | 2 | 0 | 2 | 0 | 0 | 1 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | 0 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | 4 | 4 | 1 | -2 | 0 | -2 | 0 | -2 | 0 | 0 | 1 | -2 | 1 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | orthogonal lifted from S3≀C2 |
ρ20 | 4 | 4 | 4 | 4 | -2 | 1 | 2 | 0 | 2 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | -1 | -1 | 0 | 0 | 0 | -1 | orthogonal lifted from S3≀C2 |
ρ21 | 4 | -4 | -4 | 4 | 1 | -2 | 0 | -2 | 0 | 2 | 0 | 0 | 1 | 2 | -1 | -2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | 1 | -1 | 0 | orthogonal lifted from C2×S3≀C2 |
ρ22 | 4 | 4 | 4 | 4 | -2 | 1 | -2 | 0 | -2 | 0 | 0 | 0 | -2 | 1 | -2 | 1 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | orthogonal lifted from S3≀C2 |
ρ23 | 4 | 4 | -4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | -2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | -√3 | 0 | -√3 | √3 | 0 | 0 | 0 | √3 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | √3 | 0 | 0 | √3 | -√3 | -√3 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ25 | 4 | -4 | 4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | 1 | -2 | 0 | 0 | 0 | 0 | √3 | 0 | -√3 | √3 | 0 | 0 | 0 | -√3 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ26 | 4 | 4 | -4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | √3 | 0 | 0 | -√3 | √3 | -√3 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ27 | 4 | -4 | 4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 2 | -1 | 2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | -√3 | 0 | 0 | -√3 | √3 | √3 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ28 | 4 | 4 | -4 | -4 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -2 | 1 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | -√3 | 0 | 0 | √3 | -√3 | √3 | 0 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ29 | 4 | -4 | 4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2 | -1 | 1 | -2 | 0 | 0 | 0 | 0 | -√3 | 0 | √3 | -√3 | 0 | 0 | 0 | √3 | symplectic lifted from C32⋊Q16, Schur index 2 |
ρ30 | 4 | 4 | -4 | -4 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | -2 | -1 | -1 | 2 | 0 | 0 | 0 | 0 | √3 | 0 | √3 | -√3 | 0 | 0 | 0 | -√3 | symplectic lifted from C32⋊Q16, Schur index 2 |
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 44)(18 45)(19 46)(20 47)(21 48)(22 41)(23 42)(24 43)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 72)(34 65)(35 66)(36 67)(37 68)(38 69)(39 70)(40 71)(49 78)(50 79)(51 80)(52 73)(53 74)(54 75)(55 76)(56 77)(57 94)(58 95)(59 96)(60 89)(61 90)(62 91)(63 92)(64 93)
(2 50 82)(4 84 52)(6 54 86)(8 88 56)(10 32 77)(12 79 26)(14 28 73)(16 75 30)(17 91 36)(19 38 93)(21 95 40)(23 34 89)(42 65 60)(44 62 67)(46 69 64)(48 58 71)
(1 49 81)(3 83 51)(5 53 85)(7 87 55)(9 31 76)(11 78 25)(13 27 80)(15 74 29)(18 37 92)(20 94 39)(22 33 96)(24 90 35)(41 72 59)(43 61 66)(45 68 63)(47 57 70)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 44 5 48)(2 43 6 47)(3 42 7 46)(4 41 8 45)(9 19 13 23)(10 18 14 22)(11 17 15 21)(12 24 16 20)(25 36 29 40)(26 35 30 39)(27 34 31 38)(28 33 32 37)(49 62 53 58)(50 61 54 57)(51 60 55 64)(52 59 56 63)(65 87 69 83)(66 86 70 82)(67 85 71 81)(68 84 72 88)(73 96 77 92)(74 95 78 91)(75 94 79 90)(76 93 80 89)
G:=sub<Sym(96)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,44)(18,45)(19,46)(20,47)(21,48)(22,41)(23,42)(24,43)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,72)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(49,78)(50,79)(51,80)(52,73)(53,74)(54,75)(55,76)(56,77)(57,94)(58,95)(59,96)(60,89)(61,90)(62,91)(63,92)(64,93), (2,50,82)(4,84,52)(6,54,86)(8,88,56)(10,32,77)(12,79,26)(14,28,73)(16,75,30)(17,91,36)(19,38,93)(21,95,40)(23,34,89)(42,65,60)(44,62,67)(46,69,64)(48,58,71), (1,49,81)(3,83,51)(5,53,85)(7,87,55)(9,31,76)(11,78,25)(13,27,80)(15,74,29)(18,37,92)(20,94,39)(22,33,96)(24,90,35)(41,72,59)(43,61,66)(45,68,63)(47,57,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,44,5,48)(2,43,6,47)(3,42,7,46)(4,41,8,45)(9,19,13,23)(10,18,14,22)(11,17,15,21)(12,24,16,20)(25,36,29,40)(26,35,30,39)(27,34,31,38)(28,33,32,37)(49,62,53,58)(50,61,54,57)(51,60,55,64)(52,59,56,63)(65,87,69,83)(66,86,70,82)(67,85,71,81)(68,84,72,88)(73,96,77,92)(74,95,78,91)(75,94,79,90)(76,93,80,89)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,44)(18,45)(19,46)(20,47)(21,48)(22,41)(23,42)(24,43)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,72)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(49,78)(50,79)(51,80)(52,73)(53,74)(54,75)(55,76)(56,77)(57,94)(58,95)(59,96)(60,89)(61,90)(62,91)(63,92)(64,93), (2,50,82)(4,84,52)(6,54,86)(8,88,56)(10,32,77)(12,79,26)(14,28,73)(16,75,30)(17,91,36)(19,38,93)(21,95,40)(23,34,89)(42,65,60)(44,62,67)(46,69,64)(48,58,71), (1,49,81)(3,83,51)(5,53,85)(7,87,55)(9,31,76)(11,78,25)(13,27,80)(15,74,29)(18,37,92)(20,94,39)(22,33,96)(24,90,35)(41,72,59)(43,61,66)(45,68,63)(47,57,70), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,44,5,48)(2,43,6,47)(3,42,7,46)(4,41,8,45)(9,19,13,23)(10,18,14,22)(11,17,15,21)(12,24,16,20)(25,36,29,40)(26,35,30,39)(27,34,31,38)(28,33,32,37)(49,62,53,58)(50,61,54,57)(51,60,55,64)(52,59,56,63)(65,87,69,83)(66,86,70,82)(67,85,71,81)(68,84,72,88)(73,96,77,92)(74,95,78,91)(75,94,79,90)(76,93,80,89) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,44),(18,45),(19,46),(20,47),(21,48),(22,41),(23,42),(24,43),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,72),(34,65),(35,66),(36,67),(37,68),(38,69),(39,70),(40,71),(49,78),(50,79),(51,80),(52,73),(53,74),(54,75),(55,76),(56,77),(57,94),(58,95),(59,96),(60,89),(61,90),(62,91),(63,92),(64,93)], [(2,50,82),(4,84,52),(6,54,86),(8,88,56),(10,32,77),(12,79,26),(14,28,73),(16,75,30),(17,91,36),(19,38,93),(21,95,40),(23,34,89),(42,65,60),(44,62,67),(46,69,64),(48,58,71)], [(1,49,81),(3,83,51),(5,53,85),(7,87,55),(9,31,76),(11,78,25),(13,27,80),(15,74,29),(18,37,92),(20,94,39),(22,33,96),(24,90,35),(41,72,59),(43,61,66),(45,68,63),(47,57,70)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,44,5,48),(2,43,6,47),(3,42,7,46),(4,41,8,45),(9,19,13,23),(10,18,14,22),(11,17,15,21),(12,24,16,20),(25,36,29,40),(26,35,30,39),(27,34,31,38),(28,33,32,37),(49,62,53,58),(50,61,54,57),(51,60,55,64),(52,59,56,63),(65,87,69,83),(66,86,70,82),(67,85,71,81),(68,84,72,88),(73,96,77,92),(74,95,78,91),(75,94,79,90),(76,93,80,89)]])
Matrix representation of C2×C32⋊Q16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 72 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
55 | 48 | 0 | 0 | 0 | 0 |
25 | 59 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 19 |
0 | 0 | 0 | 0 | 5 | 59 |
0 | 0 | 66 | 59 | 0 | 0 |
0 | 0 | 14 | 7 | 0 | 0 |
57 | 4 | 0 | 0 | 0 | 0 |
27 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[55,25,0,0,0,0,48,59,0,0,0,0,0,0,0,0,66,14,0,0,0,0,59,7,0,0,14,5,0,0,0,0,19,59,0,0],[57,27,0,0,0,0,4,16,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,1,0,0,0,0,0,0,1,0,0] >;
C2×C32⋊Q16 in GAP, Magma, Sage, TeX
C_2\times C_3^2\rtimes Q_{16}
% in TeX
G:=Group("C2xC3^2:Q16");
// GroupNames label
G:=SmallGroup(288,888);
// by ID
G=gap.SmallGroup(288,888);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,112,141,120,675,346,80,2693,2028,362,797,1203]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*b*e^-1=c,d*c*d^-1=b^-1,e*c*e^-1=b,e*d*e^-1=d^-1>;
// generators/relations
Export